+ 1 888 391 5441

ADAS and Autonomous Driving Industry Chain Report, 2018-2019 - Automotive Radar

Table of Contents

1 Introduction to Radar Technology
1.1 Definition of Radar
1.2 Radar Band Division in China
1.3 Overview of Automotive Radar
1.3.1 Comparison between Radar and Other Sensors
1.3.2 Automotive Radar Spectrum
1.3.3 Working Principle of Radar
1.3.4 Radar Classification and Modulation Technology
1.3.5 79GHz Radar
1.3.6 Radar Cascade
1.4 Composition of Automotive Radar System
1.4.1 Core Parts for Radar--Monolithic Microwave Integrated Circuit (MMIC)
1.4.2 Core Parts for Radar--Antenna PCB
1.4.3 Radar Chip
1.4.4 Chinese Radar Chip Vendors
1.4.5 Hangzhou Andar Technology Co., Ltd. Launched Phased Array Architecture-based 77GHz CMOS Radar Chip
1.5 Application of Radar
1.5.1 Applicable to Many Industries
1.5.3 Application in Different ADAS Functions
1.5.4 Radar Detection Modes and Application Cases
1.5.5 Radar Competitors
1.5.6 Typical Automotive Radars

2 Automotive Radar Market
2.1 The Four New Automotive Trends (Electrification, Connectivity, Intelligence and Sharing) Drive Automotive Radar Market  
2.2 Chinese Automotive Radar Market will See Faster Growth than Global Market
2.3 Higher Installation of ADAS Boosts Automotive Radar Market
2.4 Growth of Passenger Car Radar Market Slowed in 2018 after a Boom
2.5 77GHz Radars Become Available on the Market
2.6 Application of Passenger Car SRR/LRR and 24GHz/77GHz Radar in China
2.7 Passenger Car Radar Shipments and Market Size (by 24G/77G), 2016-2021E
2.8 Automotive Radar Shipments and Market Size in China, 2016-2021E
2.9 Global Automotive Radar Market Size, 2016-2021E
2.10 Installation Rate of Passenger Car Radar in China, 2017-2018
2.11 Monthly Penetration of Radar for New Passenger Cars, 2017-2018
2.12 Passenger Car Radar Installation Structure and Monthly Growth by Solution, 2017-2018
2.13 Penetration of Radar for New Passenger Cars by Solution, 2017-2018
2.14 Penetration of Radar for New Passenger Cars by Solution, 2017-2018
2.15 Sales of Vehicles with Radars by Brand/Model, 2018
2.16 77G LRR Shipments and Suppliers’ Market Shares in Chinese Passenger Car Market, 2018
2.17 Supply Relationship between Japanese Automakers and ADAS Sensor Suppliers
2.18 Supply Relationship between American, Korean and Chinese Automakers and ADAS Sensor Suppliers
2.19 Supply Relationship between European Automakers and ADAS Sensor Suppliers

3 Radar Industry
3.1 Automotive Radar Industry
3.1.1 China’s Automotive Radar System Technology Roadmap
3.1.2 RF CMOS Semiconductor Process
3.1.3 Radar and Camera Fusion
3.1.4 Trends for Radar Sensor
3.1.5 Integration and High Precision Trends for Radars
3.1.6 The Increasing Number of Radars for a Single Vehicle
3.1.7 Radar is Penetrating from High-class Models into Low/Middle-class Models
3.1.8 77GHz Radar will be the Mainstream
3.2 AWR1642-based 4D Radar
3.2.1 Many a Start-ups Uses AWR1642 to Develop “4D Radar”
3.2.3 Arbe Robotics
3.2.4 Ainstein
3.3 Metawave’s Next-generation 4D Imaging Radar for Perception
3.3.1 Profile of Metawave
3.3.2 WARLORD High Resolution Radar and Its Working Principle
3.3.3 Radar Running Conditions and Loss
3.3.4 WARLORD’s Merits and Solutions to its Demerits
3.3.5 Structural Features of Active Metamaterials
3.3.6 Being Insusceptible to Disturbance
3.3.7 WARLORD Classifies Detection Objects

4 Global Radar Vendors
4.1 Continental
4.1.1 ADAS Products
4.1.2 Fifth-generation 77GHz Radar
4.1.3 Distribution of Customers for Its Radar and LiDAR Products
4.1.4 Continental Radar Applied in Chinese Market
4.2 Bosch
4.2.1 Revenue in 2018
4.2.2 Radar
4.2.3 LRR4 Radar and MRR4 Radar
4.2.4 Ongoing Development of Fifth-generation 77GHzMMW Radar
4.2.5 Applications of Bosch Radar
4.3 ZF TRW
4.3.1 Active and Passive Safety Technology Division
4.3.2 ZF TRW Radar Applied in Chinese Market
4.3.3 Long-range Radar
4.3.4 AC100 Medium and Long-range Radar
4.4 Aptiv
4.4.1 Revenue in 2018
4.4.2 Customer Distribution & Terminal Market Distribution by Region
4.4.3 ESR Radar
4.4.4 Radar + Monocular Camera Integrated System
4.4.5 Aptiv Radar Applied in Chinese Market
4.5 Veoneer
4.5.1 Active Safety Technology
4.5.2 77GHz and 24GHz Radar
4.5.3 Radar Developments in 2018
4.6 Denso
4.6.1 Revenue in 2018
4.6.2 77GHz Radar
4.6.3 Denso Radar Applied in Chinese Market
4.6.4 Autonomous Driving Investment and R&D Layout
4.7 Valeo
4.7.1 Operation in FY2017- FY2018
4.7.2 Revenue of Comfort and Driving Assistance Business Group
4.7.3 Main Products
4.8 Hella
4.8.1 Operation
4.8.2 24GHz Radar
4.8.3 Brand New 77GHz Radar
4.8.4 Autonomous Driving Development Roadmap
4.8.5 Autonomous Driving Partners and Cooperation
4.9 Denso Ten (formerly Fujitsu Ten)
4.9.1 Short-range Radar
4.10 Oculii
4.10.1 Oculii 4D Radar
4.10.2 Products
4.11 ADI
4.11.1 High Performance Imaging Radar
4.11.2 CMOS Radar Technology Platform and Featured Products
4.11.3 Intelligent Transportation Solution Based on 24GHz Radar Demonstration Platform
4.11.4 Acquisition of Symeo

5 Chinese Radar Vendors
5.1 WHST (Wuhu Sensortech)
5.1.1 Automotive Radar
5.1.2 Latest Progress: shipments have reached over 100,000 units, generating the revenue of nearly RMB100 million
5.2 Autoroad
5.2.1 77/79GHzRadar
5.2.2 Latest Progress
5.3 Intibeam
5.3.1 24GHz Blind Spot Radar and 77GHz Anti-collision Radar
5.3.2 Latest Trend: Release of 79GHz Radar
5.4 Muniu Tech
5.4.1 Automotive Radar Positioning and Developments
5.4.2 Main Products
5.5 Nanoradar Science &Technology
5.5.1 Development Course
5.5.2 Main Products
5.6 Morgina
5.6.1 Development Course & Business Planning
5.6.2 Products Based on TI Single Chip Solution
5.7 Suzhou Millimeter-wave Technology Co., Ltd.
5.7.1 Development Strategy
5.7.2 Main Products
5.7.3 Latest Progress
5.8 HawkEye Technology
5.8.1 Southeast University – HawkEye Technology Automotive Electronic Technology Joint Research Center
5.9 IMSEMI
5.9.1 24GHz MMIC
5.9.2 Development Course
5.10 ANNGIC
5.11 Linpowave
5.12 Calterah Semiconductor
5.12.1 77GHz Radar Transceiver Chip and Application
5.13 TransMirowave
5.13.1 Automotive Radar

6 Application of Cascade Radar in Automobile
6.1 Profile of Cascade Radar  
6.1.1 Cascade Radar Empowers L2 Autonomous Driving or Above
6.1.2 Operating Mode of Cascade Radar: MIMO
6.1.3 Operating Mode of Cascade Radar: TX Beamforming
6.1.4 MIMO VS TX Beamforming
6.1.5 Cascade Challenge
6.1.6 Cascade Challenge: LO Length Matching
6.1.7 Four-chip Cascade System
6.1.8 TI Cascade Radar
6.1.9 Imaging Radar System Demonstrator
6.1.10 Laboratory Testing
6.1.11 Detection of a Car with Doors Open
6.1.12 Detection of Kerb Contours
6.1.13 Contrast-Angle Estimation Method
6.1.14 Field Test 1: MIMO Radar
6.1.15 Field Test 2: TX Beamforming (Pedestrian)
6.1.16 Field Test 3: TX Beamforming (Vehicle)
6.2 Cascade Radar in Vehicle Body and Chassis
6.2.1 Cascade Radar in Vehicle Body and Chassis (1)
6.2.2 Cascade Radar in Vehicle Body and Chassis (2)
6.3 Obstacle Detection Radar
6.3.1 Obstacle Detection Radar (1) - Application
6.3.2 Obstacle Detection Radar (2) - Hardware Platform
6.3.3 Obstacle Detection Radar (3) - Processing Chain
6.3.4 Obstacle Detection Radar (4) - Evaluation
6.4 Driver Vital Signs Monitoring
6.4.1 Driver Vital Signs Monitoring (1) - Application
6.4.2 Driver Vital Signs Monitoring (2) - Processing
6.4.3 Driver Vital Signs Monitoring (3) - Processing
6.4.4 Driver Vital Signs Monitoring (4) - Evaluation
6.5 Vehicle Occupant Detection
6.5.1 Vehicle Occupant Detection (1) - Application
6.5.2 Vehicle Occupant Detection (2) - Processing Chain
6.5.3 Vehicle Occupant Detection (3) - Evaluation

Why http://www.chinamarketresearchreports.com
ADAS and Autonomous Driving Industry Chain Report, 2018-2019 - Automotive Radar
Published By :Research In China
Price

Avail 15% Discount, Use MAY15 Coupon Code

We use cookies to deliver the best possible experience on our website.
By continuing to use this site, or closing this box, you consent to our use of cookies. To learn more, visit our Privacy Policy